
Disassembling and Patching iOS Applications

Arpita Jadhav Bhatt#1, Chetna Gupta*2

#*Department of Computer Science & IT,

Jaypee Institute of Information Technology, Noida
A-10, Sector-62, Noida, India

Abstract— Apple’s iOS is amongst the widely used mobile
operating system. Apple follows a mandatory code signing
mechanism and an app review for enhancing the level of
security for iOS devices. This review procedure ensures that
the applications are developed by genuine developers or
enterprises. However, recent attacks and data harvesting
incidents with the benign applications, have demonstrated that
the mandatory code signing procedure is vulnerable to attacks.
With the popularity of Smartphone and distribution of third
party applications, the malware which is specially designed for
the modern mobile platforms is hastily becoming a serious
threat. As the users rely more on the third party applications
(which span in a wide range of categories like social media and
networking, gaming, data management etc.), they put their
personal and confidential information at risk. With the
widespread use of third party applications, there have been
multiple reports of Malware attacks on iPhone. Attackers use
these applications to disguise malwares into the user’s
smartphone. Therefore, for ensuring security of the devices
one should perform reverse engineering of mobile applications
for catching up the vulnerabilities in them before the attackers
do. This paper aims to perform reverse engineering of iOS
applications by disassembling, decompiling the application’s
code using Hopper tool. The paper also demonstrates how an
analyst can patch the code in the application for discovering
vulnerabilities. In this paper we have demonstrated the
process of reverse engineering by disassembling the code with
the help of custom application.

Keywords— Reverse Engineering, Disassembling,
Decompiling, iOS Applications, Run time Analysis, mobile
applications, Run time Modifications

I. INTRODUCTION

With the popularity of Smartphone, the malware which is
specially designed for the modern mobile platforms is
increasing rapidly. Further, the problem is multiplexed by
the growing convergence of cellular networks, wired and
wireless networks, since the developers of the malware or
virus can now develop sophisticated malicious software,
which is capable of migrating across the network domains
[1]. This is done in an effort to exploit the vulnerabilities
and the services which are specific with respect to each
network. With the growth of Smartphone as well as the
networking technologies i.e. the migration from the legacy
networks to the converged networks and then to the
converged communications has complicated the situation
for the providers. They must now deal with millions of
mobile devices, which is outside their reach and
simultaneously there is huge growth in the wireless network
traffic and converged wired traffic [1]. The mobile devices

are not equipped with adequate security management
capabilities, and they also add up complexity with the
massive variety of the applications which are available from
their corresponding official or the third-party online
application stores [1]. Due to which the network and/or
service providers must cope with the management and
provisioning of the mobile devices as well as the traffic
generated from specific mobile applications, which are
traveling over their wireless and wired interfaces. With the
continuously growing mobile malware threat, smartphones
these days have become the prime target for the attackers as
they contain user’s personal data. Recent researches have
shown that by blending the spyware as a malicious payload
with the worms as a delivery mechanism, the malicious
applications can be exploited for many facets of identity
theft [1].

The developers of the third party application now use
polymorphic coding techniques which are capable of
affecting multiple platforms simultaneously. By the use of
polymorphic coding techniques, developer can try to bypass
Apple Store’s scrutinizing process or vetting process. Apart
from the above, the vulnerable areas include connection
with the wireless network, which is insecure for data
storage.

 Past attacks on iOS Devices
Apple has designed the operating system in such a way

that it provides several securities which include: mandatory
code signing process, data encryption, creation of binary
files etc. [2]. But past attacks which arise due to the
presence of third party applications on the iOS devices have
discovered different types of vulnerabilities. On a further
note there were many vulnerabilities reported in the iOS
device architecture which included code signing security
bypass vulnerability, bypassing hardware encryption,
bypassing keychain encryption etc. Apart from that there
have been many data harvesting incidents that included
Mogo Road, Storms 8, iSpy, Aurora feint, libtiff, SMS
fuzzing etc. [3],[5].The recent attacks include Wirelurker
malware attack, masque attack that replaces third party
applications with fake applications that have the same name.
The infected application masquerades as real application
and steals private data [15]. Malwares are dangerous as they
are capable of performing actions without user’s knowledge,
example, making calls charges on phone bill, sending spam
messages to the user’s contact list. It can also give an
intruder remote control over the device. Malware attacks
can result in identity theft or financial fraud. In the lieu of
the above problems, it is important to examine the

Arpita Jadhav Bhatt et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 239-248

www.ijcsit.com 239

behaviour of applications so that data stored in the devices
remain intact. Keeping in view the past malware attacks on
iOS devices; the aim of the paper is to perform
disassembling of iOS application’s code for analysing the
flow of application and discovering vulnerabilities of an
application.

The rest of the paper is organized as follows: Section 2
introduces the process of Reverse Engineering followed by
its importance and its process. Section 3 introduces Hopper
tool and its features. Section 4 describes how to create an
ipa file of application under test and its executable file
using Xcode which would be provided as an input for the
Hopper tool. Section 5 describes disassembling
application’s code using Hopper Disassembler. Section 6
presents analysing iOS applications using Hopper, followed
by Section 7 that demonstrates Run time modification of
application’s code by using code patching. Section 8
includes the Conclusion part.

The following section will introduce the importance of
reverse engineering, its process and what are the essentials
required for performing reverse engineering.

II. REVERSE ENGINEERING

The section describes what is reverse engineering and the
process of Reverse Engineering. Reverse engineering of
applications is useful when the application’s source code is
not available, so the analysts or users can disassemble the
binaries and examine the type of data associated with an
application. Cracking mobile applications helps an analyst
to trace the application’s flow when we are conducting
security assessment [6]. Reverse engineering also aids the
testers in analysing the work flow and weak points of the
application.

A. Process of Reverse Engineering

The process of reverse engineering is a manual as well as
an intensive process which requires knowledge of various
mobile operating systems and architectures. For performing
engineering of applications the testers or the analysts must
have in-depth knowledge of the platform, on which the
application runs. The various mobile operating systems
available are Android, Apple’s iOS, Windows, Symbian etc.
[6]. Apart from the platforms and software development kit
required to create mobile applications, the analysts must be
familiar with the ARM CPU [10], [14] architecture that
most of the mobile devices use.
When performing reverse engineering, the analysts must
overcome several challenges as the developers of the
mobile operating systems impose security limitations
(Permission Based model while installing applications).
The third party applications are signed and run in their own
sandboxes which are tied to the user profiles. Each mobile
platform uses different configuration files and requires
different tools for decompiling and disassembling the code.
For Example Android platform uses Android developer
tools, SDK manager, and Eclipse plug-in for development,
while iOS platform uses Xcode as Integrated Development
Environment and Objective-C as programming language.

Apart from the IDE’s the executable files are also
different for each platform, for Example: files developed for
Android devices have .apk extension while the applications
developed for iOS devices have .app extension. On a
further note, for gaining root level access for iOS devices,
the users must first jailbreak their device using Cydia
Software and then load the applications which may be
required for testing. Hence the process of reverse
engineering requires an in-depth knowledge of different
mobile platforms, types of executable files generated by
each platform, understanding of programming language
which is required to develop the applications. The process
of reverse engineering of the mobile applications, allows
the analyst to get an insight with respect to the application’s
behaviour and modify them to discover the vulnerable area
in an application, before the real intruders do [6]. For
performing reverse engineering of iOS applications our
paper demonstrates disassembling of code using Hopper
tool. The tool helps in static and dynamic analysis of
executable files or application’s binaries [4]. It is a tool for
Linux and OS X and helps in disassembling, debugging
and decompiling the executable. It has support for 32/64 bit
configuration [7]. The following section introduces Hopper
tool followed by subsequent sections that demonstrate how
to create an input file for hopper tool, i.e. the ipa file [8] and
how to perform run time analysis and modifications using
this tool.

III. INTRODUCTION TO HOPPER

Hopper is a reverse engineering tool and is compatible with
Mac, Linux and Windows Operating System. In this paper,
we have used Hopper V3 on OS X 10.10.4. The important
features of this tool are mentioned below [7]:
1. It is native as it can be deployed on various operating

systems.
2. Extensible as it allows the user to create own file format.
3. Capable of generating Control flow graphs and Pseudo

codes that help an analyst to examine the behaviour of
the application under analysis.

4. Support for Objective C language [11]: The tool is
specialized in retrieving Objective C information. It
can analyse and retrieve sent messages, strings and
variables [11].

5. Support for Python Scripts.
6. Compatible with debugger: It can use GDB (Gnutella

Debugger) [22] and LLDB [13].

A. Graphical User Interface of Hopper

Figure 1 represents the graphical user interface for
hopper [7]. The left portion represented by block 1, consists
of labels and strings. It consists of all symbols which are
defined in the application’s executable file. It also includes
a search bar for searching strings inside the application’s
binary file.

The upper portion (marked as block 2 and block 3 in
figure1) is the tool bar which supports various types
including D: Data (Hopper sets an area to data, type when
the bytes represent a constant, array of integers etc.), A:
ASCII (American Standard Code for Information
Interchange and denotes a null terminated string usually a C

Arpita Jadhav Bhatt et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 239-248

www.ijcsit.com 240

string), C: Codes (can be instructions like JMP, POP,
PUSH, MOV etc.), P: Procedure (If a part of method is
successfully reconstructed by Hopper, then this byte is
associated with a procedure), and U: Undefined (Portion
that is not explored by Hopper). The users can change the
type by selecting options from the toolbar [7]. The portion
highlighted by block 3 includes the options for generating
Pseudo code and Control flow graphs.

The central portion highlighted by block 4 shows the
extracted assembly language code. Once the applications
binary is processed by Hopper, the assembly level
instructions are displayed in this section. The right portion
depicted by block 5 represents the Inspector. It displays
Instruction encoding format, comments, colour tag and
graphical views etc. [7].
Working of Hopper: Hopper transforms the application’s
binaries, set of bytes into human readable format. It
associates a type for each byte of the file and performs
automatic analysis of code as soon as we load the
application’s binary [7]. Hopper provides a user with
several options for performing operations such as producing
assembly text files, produce a new executable (this option
allows the users to patch the code and override the existing
code).
The next section demonstrates how users can create an .ipa
[8] file which is the input file for the Hopper tool.

IV. CREATING AN IPA FILE AND AN APPLICATION’S

EXECUTABLE FILE USING XCODE

This section presents how to create an .ipa file and
application’s executable file by using Xcode Simulator.

An .ipa file is an archive file for iOS applications that stores
iOS apps. An .ipa file is compressed with binary for ARM
architecture [8]. The .ipa file can be installed only on iOS
device [8]. The .app file is the application bundle which
contains executable file, icon image of the application etc.
The ipa file contains .app bundles and files meant for
iTunes. The ipa is provided to Hopper as an input for
disassembling the application’s code and generate assembly
language instructions. Once hopper tool has disassembled
the code, analysts can then analyse the overall flow of the
application, information on the necessary method, get
control graph of the application along with Pseudo code.
The analyst can further apply code patching technique in
which they can modify the assembly language instructions
to change the flow of application.

A. Creating an .ipa file using Xcode Simulator

For creating an .ipa file the user first needs to install
Xcode under the applications folder [9]. Next step is to
open the application folder and select Xcode and right click
and select ‘Show Package Contents’. In this paper, we have
used Xcode version 5.1. For creating an .ipa file, first open
Xcode and create a new project or open up an existing
project. For our tests, a custom demo application
“EmailVerifer” was used. In this the user enters email and
password and clicks on sign-in button. If the entered value
matches with the stored value in the application, the user is
directed to next screen else an alert message is displayed.
Apart from that the users can click on Register button,
forgot user and forgot password buttons. Figure 2 (next
page) depicts the general flow of the application when the
user has entered correct email-id and password. The
application then directs the user to next screen.

Figure 1. Graphical User Interface for Hopper tool.

Arpita Jadhav Bhatt et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 239-248

www.ijcsit.com 241

Figure 2. Flow of the “EmailVerifer” application if the user enters correct

Email-id and password.

If the user enters an email-Id and password combination
that does not match with the password which is stored in
the application’s code, the user gets an alert message.
Figure 3 depicts the flow of application when user has
entered incorrect email–Id.

Figure 3. Flow of the “EmailVerifer” application if the user enters

incorrect Email-id and password.

After installing the custom demo application, or creating a
new application, following steps are necessary for creating
archive file and ipa file.

Steps for creating Archive file and .ipa file
1. For generating the .ipa file we need to run the application
on the iOS device. After running the application, select
Product and click build Archive; this will create the archive
for the application under test [9]. Figure 4 depicts how we
can create the Archive for iOS application using Xcode.

Figure 4. Creating Archive of the application from Xcode.

2. For opening the Archive file after creation (Figure 4)
select Window from Xcode and click Organizer then click
Archives, the following figure displays the archive file for
our project. Click on the archive and right click on select
“Show in Finder” [9]. Figure 5 demonstrates the snapshot
for the Archive created.

Figure 5. Archive of the application under test using Xcode.

3. As shown in Figure 6, right click the archive file and
select “Show Package Contents”. Select Products ->
Applications-> Archived Project folder -> Archived Project
file for locating the .ipa file.

Figure 6. Archive file

4. Figure 7 depicts the .ipa file. This file can be selected for
providing input to Hopper disassembler. The analyst can
simply drag the .ipa file and into Hopper disassembler.

Figure 7. .ipa file

The next section will demonstrate how we can disassemble
application’s code after providing the .ipa file as an input to
Hopper disassembler.

Arpita Jadhav Bhatt et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 239-248

www.ijcsit.com 242

V. DISASSEMBLING APPLICATION’S CODE USING

HOPPER DISASSEMBLER

The section covers how an analyst can perform reverse
engineering by disassembling the code using Hopper tool
[7], analyse the workflow of the application, identify the
vulnerable areas. As the process of reverse engineering
requires users or analysts to have in-depth knowledge of the
platform on which they work, for disassembling the code
for iOS applications we require .ipa file of the application
that needs to be analysed. After generating the .ipa file, the
next step is to provide the .ipa file as an input to the hopper
for disassembling the code (Refer section IV). The
application which needs to be analysed is EmailVerifer
application, the user’s email Id and password are hard
coded in the application, if the user enters correct Email Id
and password combination, the user is validated to next
page or else an alert message is displayed. Drag the .ipa
file into assembler, select ARM v7 and click on next (Refer
figure 9 and 10). An ARM (Advanced Risc Machines
Processor) consists of family of Instruction Set of CPU’s
which are based on reduced instruction set computing
(RISC) [10] [14]. ARM processors are widely used in
electronic devices such as Tablets, Smartphones,
multimedia players etc. ARM-7 family is most extensively
used 32-bit embedded processor family [14] [16]. Select
ARM v7 option, then click on Next and select MACH-O
format (Figure 9) [17] [18] [19].

After selecting the above options we get the disassembled
code. Figure 10 depicts the code generated by Hopper
disassembler after dragging the .ipa file

Figure 8. Options for disassembling the .ipa file

Figure 9. Options for disassembling the .ipa file

.
Figure 10 depicts the code disassembled by Hopper tool
which comprises of all necessary methods used while
developing the application. It also depicts the necessary
labels and methods used inside the application. Figure
11(Next Page) describes the code of the EmailVerifer
application (in Xcode) that has Email Id hard coded inside
the application. The figure depicts an overview of the
application.

Figure 10. Options for disassembling the .ipa file

Arpita Jadhav Bhatt et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 239-248

www.ijcsit.com 243

Figure 11. Code for EmailVerifer Application (Xcode)

Figure 12. Disassembled code by Hopper when user selects ‘buttonpressed’ method

From the figure 11 we can identify the ‘buttonpressed’
method is invoked when the user clicks on sign-in button.
The section described how a user can provide an .ipa file as
an input to Hopper tool and analyse the disassembled code.
The following section will demonstrate the analysis of
EmailVerifer application in detail.

VI. ANALYSIS OF AN IOS APPLICATION USING HOPPER

This section will describe how an analyst can inspect the
general flow of the application using various features of
hopper tool. By using Hopper we can disassemble code,
generate a Control flow graph and pseudo code of the
application. These help the analyst to get insight with
detailed working of the application.

A. Analysing the Labels and Strings

The graphical user interface of the tool has a section in the
left panel (Refer figure 10) from which we can select the
labels and strings used in the application. If we click on
labels we can get procedures for any method. Figure 10 also
depicts labels for methods such as setUserEmailID,
emailButtonClicked, setUserPassword etc. If we click on a
label hopper tool will display the procedure of the selected
method [7]. Figure 12 depicts the disassembled code if the
user selects the ‘buttonpressed’ method.
Analysts can also analyse the general flow of the
application with the help of disassembled code. From figure
13 we can comprehend that the ‘buttonpressed’ method
redirects the user either to the ‘User page’ or generates an
error message. The code is highlighted in figure 13 (Next
Page).

Arpita Jadhav Bhatt et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 239-248

www.ijcsit.com 244

Figure 13. Analysis of general flow of application

By analysing the labels we can get the method names as
well as the procedures corresponding to each method. The
other important feature of this tool is that we can examine
the values in the Strings. Also the values extracted in the
Labels and Strings help user to discover other method
names, their procedures used in the application.

B. Analysing the Pseudo Code

Another important feature of the tool is that we can
generate Pseudo code of the application under analysis.
Pseudo code is a notation which resembles a programming
language in a simplified form. It is a detailed and readable
description of what a program or application must do. We
can generate Pseudo code for any method, select the
method name from the labels and click the Pseudo code
option from the tool bar. Here we have selected the
‘buttonpressed’ method from the labels and generated the
Pseudo code [7]. Figure 14 depicts the Pseudo code for the
‘buttonpressed’ Method.

By examining the Pseudo code we can see the comparison
of register values which contain the email id and password
combination (in form of strings). If the strings entered while
running the application match with the hardcoded Email-Id
(which is ‘iphone@gmail.com’), then the user is redirected
to the next screen or else an Alert message is generated.
The Pseudo code helps an analyst to get insight into the
application’s variables and assembly language instructions.

The code highlighted in the Figure 14 depicts the cases
when the user has entered correct Email-id in which a user
page will be called or if the user has entered incorrect email
an alert message would be prompted. Apart from generation
of labels,

Figure 14. Pseudo Code for Email Verification Application

Strings and Pseudo code, one can generate control flow
graph with respect to the application.
Following sub-section demonstrates the use of Control
Flow Graph for the EmailVerifer application.

C. Analysing the Control Flow Graphs

We can generate Control Flow Graphs by selecting the
Control Flow graph option from the tool bar. A Control
Flow Graph represents the behavior of the application or a
program in a graphical format. It describes all the paths
which may be traversed during the execution of an
application.

Arpita Jadhav Bhatt et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 239-248

www.ijcsit.com 245

Figure 15. Analysis of control flow graph for Email Button Clicked method

Hopper provides option to generate the control flow graph
in the form of a PDF file also. Figure 15 depicts the control
flow of the application. The analyst can analyze the flow of
application at a detailed level. For generating the Control
Flow Graph we can select the name of the method from the
Labels section and then from the tool bar, we can select the
option to generate Control Flow Graph.
Figure 15 is one of the parts of the control flow graph
wherein we can observe that incorrect email and password
combination entered by user leads to an area on the left
hand side, whereas the correct Email Id and Password
combination leads to right hand side. The Left hand side
portion has the incorrect Email or Password alert message
and the right hand side portion provides navigation towards
the user page. A blue colour line on the Control flow graph
indicates whenever the condition is true. It would then
execute the block highlighted by blue colour. If the
condition is false then application will execute the block
highlighted by red colour.
Our goal would be to redirect to the right hand side and
bypass the login method. By bypassing login method, user
can thus access the application without actually entering
correct credentials. In this way, we can test the application
and discover the area which can be exploited by the intruder.
Similar scenarios can be exploited in applications which
require login id\password or social networking apps where
the user is validated, or in gaming applications when the
level requires some amount of coins or energy levels before
starting it.
Figure 15 depicts the control flow graph of the application
when ‘buttonpressed’ method is called.

D. Analysing the ARM Assembly language instructions
The iOS devices are based on the ARM architecture. The
language used for creating iOS application is Objective-C
language. The Objective-C language is object oriented
language which provides the users with a dynamic runtime
environment [23] [11]. The Objective-C code that is used
for developing iOS application is converted into ARM
assembly language and then to machine code [22]. If an
analyst has a good understanding of the assembly language,
it is possible to decipher the code which is written in
Objective-C during runtime and modify it [22]. From
Figures 10, 12, 13, 14 and 15 we can trace out the assembly
language instructions generated by the Hopper tool. The
instructions are BNE (Not Equal) [20] [24], mov (Move)
[24], ADD, PUSH and other test instructions. The assembly
language comprises of Instructions: which is a statement
executed at runtime, Operands: the entities operated by the
instructions and Addresses: the locations in memory to
store data [21].
In figure 15, we have an instruction ‘bne 0xaa3a’, a block
which corresponds to right hand side where the control of
the application reaches after the user is validated. So our
goal will be to modify the assembly language instruction
such that the flow is always directed towards the right hand
side (Described in Section 7).
The section included how can an analyst perform analysis
of iOS applications by analysing the assembly code, check
for the methods and procedures used in an application,
generate Pseudo code and examine the flow of the
application by using Control flow Graph. Next section will
describe how an analyst can perform Run time modification
by patching the code inside the application and produce a
new executable file.

Arpita Jadhav Bhatt et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 239-248

www.ijcsit.com 246

VII. PERFORMING RUN TIME MODIFICATION IN IOS

APPLICATION BY CODE PATCHING

This section will describe how an analyst can modify
application’s behaviour by code patching. Code patching
allows modifying an instruction so that application’s
behaviour or flow can be altered.
From above section we observed that a branch instruction is
invoked (Refer Figure 12, 15) when user enters an Email-Id
and Password. In order to alter application’s behaviour such
that it always invokes the user page irrespective of email id
(Refer Figure 2), Click on Modify instruction and select
Assemble instruction [7] [12] (Refer figure 16).

Figure 16. Modifying the assembly instructions

Select the bne (Not Equal) instruction (analysed from the
control flow graph, Figure 15) and type b 0xaa3a [7] [24].

Figure 17. Modifying the assembly instructions for ‘buttonpressed’

clicked method

Figure 18. After Modifying the assembly instructions for

‘buttonpressed’ clicked method

Figure 18 depicts the before and after modification of the
assembly instruction bne to b [24].
Now, to save the code, Click on the file option from the
toolbar and select Produce New Executable, this will
override the existing code and patch the new code. It is
important to save the file [7] [8] after patching the code. An
alternative approach for modifying the behaviour of the
application is to use NOP Region option. Figure 19 depicts
the options a user can select to modify the bne instruction
[24].

Figure 19. NOP region to modify the assembly code.

Select the bne (Not Equal) [24] instruction (Figure 15) and
select NOP region [7] (Refer figure 18). Figure 20 depicts
the before and after modification of bne instruction [24].

Figure 20. After modification

The above steps will patch the binary code and every time
when user runs the EmailVerifier application, the user will
be automatically redirected to the ‘User Page’ even with
incorrect Email Id and Password combination.

Arpita Jadhav Bhatt et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 239-248

www.ijcsit.com 247

VIII. CONCLUSION

The paper presents how we can perform reverse
engineering of iOS applications by disassembling the code
using Hopper tool. For performing reverse engineering, one
of the methods used was disassembling application’s code.
After analysing the disassembled code, it was observed that
by patching the instructions by using code patching
technique, we were able to modify the applications
behaviour. Similar method, if applied to other applications,
would expose vulnerable areas which the attacker may
exploit in order to bypass the logic of the application code.
The demonstration of demo application is supported with
the help of code snippets and figures. With the help of this
tool we have extracted the assembly language instructions
of the application under analysis. The code patching
technique demonstrated in Section 7 can be used to bypass
certain methods in an application and hence examine
probable vulnerabilities. The suggested work thus helps the
Smartphone users to study the behaviour of installed
applications, enhance security and in turn protect their
privacy.

REFERENCES
[1] Dimitrios Damopoulos, Georgios Kambourakis, Stefanos Gritzalis

and Sang Oh Park, 'Exposing mobile malware from the inside (or
what is your mobile app really doing?)’, Peer-to-Peer networking
and Applications, 29th October 2012, Print ISSN: 1936-6442,
Publisher Springer US

[2] Tim Werthmann, Ralf Hund, Lucas Davi, Ahmad-Reza Sadeghi and
Thorsten Holz (May 2013), “PSiOS: Bring Your Own Privacy &
Security to iOS Devices”, 8th ACM Symposium on Information,
Computer and Communications Security (ASIACCS 2013)

[3] Oliver Karow, Symantec Germany GmbH, “Apple iOS Security in
the Enterprise”.
Link:http://www.oliverkarow.de/cruft/Apple%20iOS%20Security%
20in%20the%20Enterprise%20WP.pdf

[4] Aswathy Dinesh and Ming Chow, "An analysis of mobile malware
and detection techniques"

[5] Charlie Miller , Dion Blazakis, Dino DaiZovi ,Stefan Esser,
Vincenzo Iozzo , Ralf-Philip Weinmann “iOS Hacker's Handbook”
Publication Date: May 8, 2012 , ISBN-10: 1118204123 | ISBN-13:
978-1118204122 , First Edition, Published by John Wiley & Sons

[6] Megan Horner,’ How to Find Vulnerabilities in Mobile Apps
through Reverse Engineering’, IT Security, January 24,2013, Link:
https://dalewifisec.wordpress.com/2013/01/24/how-to-find-
vulnerabilities-in-mobile-apps-through-reverse-engineering/

[7] Tutorial Hopper Link: http://www.hopperapp.com/tutorial.html
[8] .ipa (file extension), Wikipedia Link:

http://en.wikipedia.org/wiki/.ipa_%28file_extension%29
[9] Majinsmash Gaming ,’How to Make An IPA For Your App In

Xcode Without Dev. Account ‘ Link:
https://www.youtube.com/watch?v=aZ747B6MAOA

[10] ARM Processor, Link:
http://whatis.techtarget.com/definition/ARM-processor

[11] Stephen G. Kochan,"Programming in Objective-C (Developer's
Library): Sixth Edition, Publication Date: December 2013, ISBN-
13:978-0-321-96760-2 | ISBN-10:0-321-96760-7, Published by
Pearson Education, Inc.

[12] Prateek Gianchandani, “IOS Application Security Part 28 –
Patching IOS Application with Hopper”. InfoSec Institute, Link :
http://resources.infosecinstitute.com/ios-application-security-part-
28-patching-ios-application-hopper/

[13] Bart Cone, Hopper + lldb for iOS Developers : A Gentle
Introduction Link : http://www.bartcone.com/new-
blog/2014/11/26/hopper-lldb-for-ios-developers-a-gentle-
introduction

[14] ARM, The Architecture of digital world Link:
http://www.arm.com/products/processors/classic/arm7/

[15] Malarie Gokey, Digital Trends” Researchers find new risk in iOS
‘Masque Attack’ bug”, Link :
http://www.digitaltrends.com/mobile/ios-bug-masque-attack-news/

[16] William Hohl,"ARM Assembly Language: Fundamentals and
Techniques 1st Edition", ISBN-13: 978-1439806104,ISBN-10:
1439806101, Published by Taylor & Francis Group

[17] Wikipedia “Mach - O” , Link: http://en.wikipedia.org/wiki/Mach-O
[18] Sami Samhuri, Basics of Mach-O format,

Link:https://samhuri.net/posts/2010/01/basics-of-the-mach-o-file-
format/, January 2010

[19] Mac Developer Library OS X ABI Mach-O File Format Reference
Link:https://developer.apple.com/library/mac/documentation/Devel
operTools/Conceptual/MachORuntime/index.html#//apple_ref/doc/
uid/TP40000895-CH248-SW3

[20] Steve Friedl, "Unixwiz.net Tech Tips Intel x86 JUMP quick
reference " Link: http://www.unixwiz.net/techtips/x86-jumps.html

[21] Oracle,'x86 Assembly Language Reference Manual'
Link:http://docs.oracle.com/cd/E19120-01/open.solaris/817-
5477/ennby/index.html

[22] Arnold Robbins,"GDB Pocket Reference Pocket Reference
(O'Reilly)" First Edition Publication Date: May 2005, ISBN-13:
978-0596100278, ISBN-10: 0596100272, Published by O'Reilly
Media, Inc.

[23] About Objective C Internet
https://developer.apple.com/library/mac/documentation/cocoa/conce
ptual/ProgrammingWithObjectiveC/Introduction/Introduction.html

[24] Mark McDermott,"The ARM Instruction Set Architecture",
Link:users.ece.utexas.edu/~valvano/EE345M/Arm_EE382N_4.pdf.

Arpita Jadhav Bhatt et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 239-248

www.ijcsit.com 248

